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Abstract 

From abandoned Soviet reactors to lost submarines and stolen medical materials, stewardship of 

the world’s nuclear materials throughout the nuclear age is not what one might hope it to be. The 

International Atomic Energy Agency (IAEA) estimates around 3000 incidents of illicit 

trafficking, theft, or loss of radioactive materials have occurred since 1993 [1]. Locating lost or 

stolen materials is no simple task, particularly when there is little information about the type of 

source or its activity, whether or not the source is stationary or being transported, and at large 

distances the signal-to-noise ratio is a limiting factor. Since the USS Scorpion, USS Thresher, 

and Palomares B-52 searches throughout the 1960’s [2], Bayesian inference techniques and 

Bayesian search methods have become a more commonly embraced approach to complex search 

missions. The semi-autonomous wide-area radiological measurements (SWARM) system 

presented in this work utilizes multiple Unmanned Aircraft System (UAS) devices, connected 

via a central data repository (swarm theory), to more effectively survey a search space and locate 

missing radioactive sources. Coupling swarm theory with Bayesian inference techniques, 

SWARM shows great potential in overcoming the challenges of large search spaces and 

potentially low-count rate contributions from missing radiological sources. Preliminary results 

prove the search algorithms ability to quickly filter out low probability areas. In simulation, three 

drones reduced the area of interest by 91.7% after each surveying three lengths of the area at an 

altitude of 100 meters. The SWARM Bayesian algorithm presented is designed to be a simple 

and efficient approach to aerial-based Bayesian search localization, applied to a multi-drone 

search format. 

 

 

  



www.manaraa.com

vi 

Table of Contents 

Chapter 1 Introduction ................................................................................................................................. 1 

1.2 Aerial Search ....................................................................................................................................... 4 

1.3 Similar Efforts ..................................................................................................................................... 5 

1.3.1 Adaptively Reevaluated Bayesian Localization (ARBL) ............................................................ 5 

1.3.2 A Sampling-Based Bayesian Approach for Cooperative Multiagent Online Search with 

Resource Constraints ............................................................................................................................ 7 

1.4 Semi-Autonomous Wide Area Radiological Measurements (SWARM) ............................................ 7 

Chapter 2 Theory ......................................................................................................................................... 8 

2.1 Bayes’ Theorem .................................................................................................................................. 8 

2.2 Bayes’ Theorem Example ................................................................................................................. 10 

2.2.1 Early Season Batting Average ................................................................................................... 10 

2.2.2 Monty Hall Problem................................................................................................................... 10 

another door. So by updating the conditional probability of a hypothesis with objective knowledge 

about the situation, a better approximation of the car’s true location can be made. ............................... 12 

2.3 Bayesian Search Methods ................................................................................................................. 12 

2.3.1 Bayesian Search Theory ............................................................................................................. 12 

2.3.2 Maximum Likelihood Estimation (MLE) .................................................................................. 12 

2.3.3 Nonparametric Density Estimation ............................................................................................ 14 

2.4 Evolution of Applied Bayesian Search Theory ................................................................................. 15 

2.4.1 Palomares H-Bomb .................................................................................................................... 15 

2.4.2 USS Scorpion ............................................................................................................................. 16 

2.5 Radiation Counting Statistics ............................................................................................................ 16 

2.6 Detector Response ............................................................................................................................ 17 

2.7 Savitzky-Golay Filter ........................................................................................................................ 18 

Chapter 3 Methodology ............................................................................................................................. 19 

3.1 Search Characterization .................................................................................................................... 19 

3.2 SWARM Hardware ........................................................................................................................... 19 

3.3 Algorithm Methodology ................................................................................................................... 20 

3.3.1 Code Instantiation ...................................................................................................................... 22 

3.3.2 Flight Pattern Optimization ........................................................................................................ 22 

3.3.3 Measurement and Detection Decision ....................................................................................... 22 



www.manaraa.com

vii 

3.3.4 Update Probability Search Space ............................................................................................... 23 

3.4 Design Considerations ...................................................................................................................... 23 

3.4.1 Multithreading ............................................................................................................................ 23 

3.4.2 Underflow .................................................................................................................................. 23 

3.4.3 Pandas ........................................................................................................................................ 24 

3.5 MCNP6 Simulation ........................................................................................................................... 24 

3.5.1 Mctal_evaluate.py ...................................................................................................................... 26 

3.6 Multi-Tier UAS Source Localization ................................................................................................ 26 

Chapter 4 Results....................................................................................................................................... 28 

4.1 Multi-Drone Simulation .................................................................................................................... 28 

4.2 Multi-Tier Bayesian Localization ..................................................................................................... 36 

Chapter 5 Discussion ................................................................................................................................. 39 

Chapter 6 Future Work .............................................................................................................................. 41 

Bibliography .............................................................................................................................................. 42 

Vita ............................................................................................................................................................. 46 

 



www.manaraa.com

viii 

List of Tables 

Table 1.1: Common Gamma Ray Emitting Radioactive Sources [4] ........................................................... 3 

Table 2.1: Conditional probability of a true random selection. .................................................................. 11 

Table 2.2: Conditional probability after door A is revealed. ...................................................................... 11 

Table 3.1: Layout of global dataframe variable. ......................................................................................... 26 

Table 4.1: Rendered x and y coordinates for high-interest areas of Bayesian search at various altitudes. . 33 

Table 4.2: Rendered x and y coordinates for high-interest areas of non-Bayesian search at various 

altitudes. ...................................................................................................................................................... 35 

Table 4.3: Rendered high-interest area sizes of Bayesian versus non-Bayesian tests. ............................... 35 

  



www.manaraa.com

ix 

List of Figures 

Figure 1.1: Growth of search area for potential theft from UTK campus [6] ............................................... 5 

Figure 1.2: Log-likelihood results for single and repeated flyovers of a 10 mCi 137Cs source [ARBL] ....... 6 

Figure 2.1: Process flow of Bayesian versus conventional inference techniques ....................................... 13 

Figure 3.1: Process flow of Bayesian search code ...................................................................................... 21 

Figure 3.2: Process flow of Bayesian update process. ................................................................................ 21 

Figure 3.3: Graphic representation of how data is handled from the individual search agent to the global 

repository. ................................................................................................................................................... 25 

Figure 3.4: Process flow of Right Angle Turn (RAT) localization method [9] .......................................... 27 

Figure 4.1: X-dimension posterior distributions at search height of 10 meters. ......................................... 29 

Figure 4.2: Y-dimension posterior distributions at search height of 10 meters. ......................................... 29 

Figure 4.3: X-dimension posterior distributions at search height of 50 meters. ......................................... 30 

Figure 4.4: Y-dimension posterior distributions at search height of 50 meters. ......................................... 30 

Figure 4.5: X-dimension posterior distributions at search height of 100 meters. ....................................... 31 

Figure 4.6: Y-dimension posterior distributions at search height of 100 meters. ....................................... 31 

Figure 4.7: Visual representation of high-interest areas from Bayesian search simulation. ....................... 33 

Figure 4.8: Posterior distribution of surveyed area at 10 meters, no updating. .......................................... 34 

Figure 4.9: Posterior distribution of surveyed area at 50 meters, no updating. .......................................... 34 

Figure 4.10: Posterior distribution of surveyed area at 100 meters, no updating. ...................................... 35 

Figure 4.11: Simulated flight path and resulting prediction from tier 2 search [9]. .................................... 37 

Figure 4.12: Raw counts and posterior distribution at end of tier 2 search [9]. .......................................... 37 

Figure 4.13: Savitzky-Golay filter over raw data spectrum [9]. ................................................................. 38 

 



www.manaraa.com

1 

Chapter 1 

Introduction 

Dating back to the first and only atomic bombs used by one nation against another, the 

detonation of “Little Boy” over the Japanese city of Hiroshima and three days later the explosion 

of “Fat Man” over Nagasaki, the destructive capability of nuclear weapons had been evident to 

the world. What began as an investigation of neutron-driven chain reactions in heavier elements 

for prolific electric power generation had quickly become one of the greatest threats facing 

humanity. Six months following the bombings, at the first general assembly of the United 

Nations (UN), there was a call for a universal elimination of atomic weapons. However, in the 

two decades following the first display of nuclear warfare China, France, the United Kingdom, 

and the Soviet Union would all successfully test nuclear weapons of their own [1]. The nuclear 

era had arrived, and because the universal surrender of nuclear weapons appeared out of reach, 

there was an evident need for both domestic and international nonproliferation efforts. As a 

result, the IAEA was formed in 1957 to encourage the safe use of nuclear materials for scientific 

and technological advances, while preventing the proliferation of weapons-grade materials to 

new states [2]. In 1970 the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) was put 

into effect and today only five states exist as approved weapons states under the NPT; US, 

Russia, China, UK, and France [3].  Since the 1970’s the list of weapons states has grown from 

five to as many as nine with non-signatory nations to the NPT [3]. Beyond the use of full-scale 

nuclear warheads by one of the declared weapons states, the risk of rogue nations or terrorist 

groups obtaining nuclear materials for use in a “dirty bomb” poses a great challenge to nuclear 

security, both domestically and internationally [4]. Nuclear materials exist in the industry today 

for use in a wide range of applications including medical, academic research, commercial power, 

etc.  

 Significant resources are put towards properly guarding hazardous radioactive materials 

in the United States. Theft from a US nuclear reactor is not necessarily the greatest concern with 

regards to rogue nuclear materials. The more pressing threat arises from countries that do not 

have the same resources to safeguard their materials properly, or choose not to, creating an 
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opportunity for theft and smuggling of these sources. An example of a failure to properly protect 

critical radioactive materials can be observed in the breakup of the Soviet Union. Following the 

collapse of the Soviet Union in the early 1990’s some of the former power’s nuclear facilities 

were abandoned or left insufficiently protected. Today, there potentially exists a nuclear black 

market throughout the Black Sea region and what is termed a “nuclear highway” through the ex-

Soviet states of Georgia, Armenia, and Azerbaijan. This nuclear highway provides trade routes 

for these unaccounted-for radioactive sources into ISIS controlled regions of Syria and Iraq [5]. 

Multiple interceptions of these trade attempts in the last decade have in fact linked the 

confiscated Uranium to that used in Russian reactors [5]. A substantial amount of former Soviet 

nuclear fuel is still unaccounted for [5]. Not only is the location of these materials a mystery, but 

it is unknown exactly how much is out there. 

A critical mass of a weapons-usable isotope such as U-235 or Pu-239 isn’t necessary to 

induce a radiological disaster; rather, any amount of highly radioactive material can be detonated 

and dispersed throughout a highly populated urban area, with the use of conventional explosives, 

thereby causing radiation poisoning for unsuspecting bystanders as well as lasting economic 

effects. In such a situation, decontamination of the affected area alone would be a lengthy and 

expensive process. This is known as a dirty bomb. Nuclear bombs are considered Weapons of 

Mass Destruction (WMD) but dirty bombs are Weapons of Mass Disruption where, 

contamination and widespread public anxiety are the primary goals of the adversary [4]. 

Dirty bombs exist in two main forms; Radiological Dispersal Devices (RDD) and 

Radiological Exposure Devices (RED). RDD’s combine radioactive material with conventional 

explosives to contaminate the surrounding area with radioactive material. RED’s simply conceal 

radioactive material in a crowded area, for example, a source in a backpack on a bus or in the 

crowd of a concert, intended to deliver high doses to people nearby, and potentially cause acute 

radiation sickness. Gamma rays are deeply penetrating, thus strong gamma emitting sources are a 

significant concern for both RDD’s and RED’s. Table 1.1 shows some commonly encountered 

gamma sources that could be obtained and used in a dirty bomb attack. 

As industrial use of nuclear materials continues to increase, the problem of keeping these 

materials secure becomes exponentially more difficult. It is estimated that over one hundred 

incidents of theft or loss of these materials occur per year leaving thousands of rogue sources 

scattered around the world [5].  
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Table 1.1: Common Gamma Ray Emitting Radioactive Sources [4] 

Isotope Use Minimum Activity (Ci) 

Cs-137 Industrial Sterilization 5000 

 Medical Sterilization 1500 

 Nuclear Medicine 5 

Co-60 Industrial Sterilization 5000 

 Medical Sterilization 1500 

 Industrial Radiography 11 

Ir-192 Industrial Radiography 5 

 Nuclear Medicine 0.02 

 

 

Dirty bombs are not intended to destroy so much as they are intended to spread fear. 

While the physical damage and cleanup is a major concern, should a dirty bomb be used, the 

resulting psychological effects and public distress are much longer lasting concerns. It is 

essential that the US continue its efforts aimed at preventing these devastating attacks before 

they can come to fruition, by more effectively locating lost or stolen radiological sources. The 

research presented utilizes aerial search agents with Bayesian inference techniques to address 

this critical security need. 

1.1 Past Efforts 

The SWARM project is a follow up effort extending off the work done first by Dr. Samuel 

Willmon and then by Blake Wilkerson on the Broad Area Search Bayesian Processor (BASBP) 

project. Dr. Willmon originally looked into utilizing Bayesian processing techniques to improve 

the signal-to-noise ratio in aerial detection systems. The original theory for the BASBP project 

can be found in his dissertation [7]. Blake Wilkerson was responsible for taking Dr. Willmon’s 

original theory and developing it into a working algorithm to operate in conjunction with a 

detector system and geographical data to eliminate low or zero-chance areas and locate 

radioactive sources within a search space [4]. Mr. Wilkerson’s algorithm was built to operate 
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with one search agent, and ran in conjunction with the Monte Carlo N-Particle (MCNP6) 

transport code to simulate flux data and subsequent detector response for a known source at a 

given distance from the detector. 

1.2 Aerial Search 

When searching for misplaced or stolen radioactive materials, factors such as the source strength, 

signal-to-noise ratio (SNR), and potential shielding of the source can make search methods more 

difficult. Ground-based search methods are limited by resources and the accessibility of the 

vehicles in the terrain to be searched. Additionally, after theft there exists a time-distance 

relationship that is of significant concern, as illustrated in Figure 1.  

A more effective approach to locating these orphan materials is to deploy unmanned 

aircraft systems (UAS) to the search space. Drones can cover large areas of interest more 

effectively than a human and can search areas unreachable by ground vehicles. Using aerial 

search agents also prevents sending humans into potentially hazardous situations.  

While aerial search methods show significant upside to the ground-based alternative, they 

do come with their own set of complications. As previously mentioned, SNR poses a major 

complication to aerial-based detection systems as the strength of the source falls off by the 

square of the distance from the detector. Since drones will normally be operating from relatively 

far working distances, the detection limits of the system are an inhibiting factor.  

 In most scenarios, varying background signals can affect detection statistics. This issue is 

of particular concern in large urban environments where background radiation varies spatially. 

Large buildings, and other man-made obstacles can have contributing radiation effects to the 

gross measurements of the detector. 
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Figure 1.1: Growth of search area for potential theft from UTK campus [6] 

 

 

 In his thesis, Blake Wilkerson showed the ability of the Bayesian framework within the 

BASBP project to improve localization of sources weaker than standard minimum detectable 

activities [4]. Deploying multiple drones to a search space drastically increases the amount of 

data that can be obtained as well as the area that can be covered in the same amount of time. 

More data improves the confidence in the Bayesian estimate of a sources location within the 

search space. Thus, by increasing the number of drones actively surveying the area, the SWARM 

effort presented in this report aims to take aerial-based source detection methods beyond their 

current elementary state and bring multi-drone source localization to fruition. 

1.3 Similar Efforts 

1.3.1 Adaptively Reevaluated Bayesian Localization (ARBL) 

This effort based out of Pacific Northwest National Lab (PNNL) presents a novel Bayesian 

approach to aerial localization of radiological sources in urban or rural environments. They use 

an arbitrarily complex directional detector along with local topography information and 

corresponding background radiation data. Then a Maximum Likelihood Estimation (MLE) 

approach (see Section 2.3.2) is employed, by comparing incoming data against a library of 
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precalculated detector responses, to various sources at a given location and distance from the 

detector, to locate sources in real-time and update the likelihood function mapping.  

This project performs multiple one-dimensional flyovers spanning multiple kilometers 

throughout a simulation. To account for the computational issues associated with limited field of 

view measurement redundancies (i.e. points near the center being measured more repeatedly than 

points near the outside, which can drive down the likelihoods of the heavily-measured regions) 

the group uses a likelihood ratio test as a normalization factor.  

The one-dimensional flight paths resulted in significant lateral uncertainty. Repeated 

flyovers showed improved uncertainty levels as seen in Figure 1.2. The second flyover showed a 

more distinct point of interest near the sources location (at the origin). Results of the ARBL tests 

were able to find sources within 20 meters of the true location. 

 

 

 

 

Figure 1.2: Log-likelihood results for single and repeated flyovers of a 10 mCi 137Cs source [ARBL]  
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1.3.2 A Sampling-Based Bayesian Approach for Cooperative Multiagent Online 

Search with Resource Constraints 

Hu Xiao et. al. present a Bayesian framework for multiagent search of a target on a 2-D plane. 

The Bayesian framework works similarly to the SWARM effort presented in this report; 

updating local probability density functions of the target as search agents obtain new 

information. However, Xiao utilizes particle sampling methods and a Gaussian mixture model 

(GMM) to create the global PDFs which are then used to make estimations regarding local 

parameters [8]. The SWARM project makes global assertions based on the collective local 

observations.  

1.4 Semi-Autonomous Wide Area Radiological Measurements 

(SWARM) 

This research aims to advance the current state of aerial search methods by utilizing multiple 

search agents in conjunction with Bayesian inference techniques to effectively locate a 

radiological source within a search space. The various search agents will operate as instances of 

the the algorithms class structure, feeding data to a central repository where it can be compiled 

and used to update the belief in the source(s) location. The SWARM effort will use a maximum 

likelihood estimation (MLE) technique to estimate and account for background radiation levels 

in real time, and a Bayesian search algorithm, with no prior knowledge or data library, to locate a 

source(s) of unknown identity or strength. The aim is to design an algorithm that is both efficient 

and versatile so that it can rapidly locate any source of interest with little to no prior knowledge.  

Building off of the BASBP effort, which focused on incorporating geographical data to 

eliminate low probability areas, the SWARM project intends to locate the target source within a 

region by iteratively reducing the search area based on the likelihood of the source’s location 

within the space.  
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Chapter 2 

Theory 

The SWARM project relies heavily on Bayesian inference techniques to locate illicit materials 

and rogue sources. This chapter will outline the essential background information and theoretical 

principles of Bayes’ theorem, as well as examples to demonstrate the versatility and application 

of Bayesian search and inference methods. 

2.1 Bayes’ Theorem 

Bayes’ theorem is named after the renowned 18th century mathematician Thomas Bayes. Bayes 

originally conceptualized the theorem as a way to make rational conclusions about the existence 

of God based on observations in the world around him [8]. This early application is important to 

understand when considering the intention of Bayes’ theorem; despite its widespread use in 

statistical and mathematical models, Bayes’ theorem is a measure of belief in a hypothesis, not a 

statistical certainty. Bayes never published his discovery, instead it was posthumously presented 

to a London group of intellectuals by Richard Price [8]. In his unpublished manuscript, Bayes 

focused specifically on easy to compute probabilities to update prior assumptions with objective 

evidence from repeatable experiments in order to make assertions about the world around him. 

He never put these concepts into a formal equation. The modern mathematical form and 

scientific application of Bayes’ theorem (equation 2.1) is credited to Pierre-Simon Laplace. 

 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) ∗ 𝑃(𝐴)

𝑃(𝐵)
      (2.1) 

 

Where, P(A) is the prior estimate, the initial estimate of belief in a given hypothesis. 

P(B|A) is the likelihood estimate, the probability of each new piece of information under the 

given hypothesis. 

P(B) is a normalizing factor, the probability of the data in all possible scenarios. 

P(A|B) is the posterior estimate, the updated probability of the hypothesis (against the data 

collected). 
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Throughout the late 18th and early 19th centuries, Bayes’ theorem was met with controversy 

over the assertion that it was simply quantifying ignorance. Since then the revolutionary equation 

has allowed mathematicians and scientists, to tackle some of the world’s most complicated 

questions by taking an initial belief, updating it with a wealth of data and new knowledge, and 

postulating a most probable solution [2]. Thanks to Bayes’ theorem, Alan Turing was able to 

crack the German enigma codes, the United States Navy was able to locate missing submarines, 

H-bombs, and scientists were even able to predict the Challenger shuttle disaster [2, 6]. 

By Bayes theorem the posterior estimate is updated as new data is available to form a 

likelihood estimate and weight against the prior. This update is normalized by the probability of 

all scenarios, P(B), where, 

 

𝑃(𝐵)  =  ∫ 𝑃(𝐵|𝐴) ⋅ 𝑃(𝐴)  𝑑𝐴    (2.2) 

 

For the prior, likelihood, and posterior estimates, an exact probability is not required for 

Bayesian inference methods. Values related to the probability such as a probability density can 

be used to represent the relative belief in one hypothesis over another. Within this project 

probability densities are utilized to express the confidence of a source’s location in a search 

space. 

There are multiple schools of thought when it comes to determining an effective prior 

estimate. The first is to assign an even probability to all hypothesis, this is known as a zero-bias 

prior. The alternative is to insert bias and more heavily weight a certain hypothesis before 

collecting any objective data. In more complex scenarios such as searching a large area for rogue 

radioactive material, certain areas can be ruled out as improbable based on prior knowledge. For 

example, a source is most likely not located in the middle of a body of water when it is known 

that the adversary is travelling by car. Aside from objective knowledge to rule out low or zero-

probability areas, inserting bias into a prior estimate can wrongly skew the posterior distribution 

when initial data is collected, and take longer to reflect an accurate belief in the hypothesis. 

The key concept to take from equation 2.1 is that the posterior is proportional to the prior 

times the likelihood. To improve the posterior distribution, one either needs a more accurate 

prior or more data to weight the distribution by. Since often there is no knowledge to begin with 

a more informed prior, more data is needed for a better posterior distribution. 
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 Bayesian search methods work in an iterative fashion, updating the posterior each time 

new data is available. Assuming a source is indeed within the search space, each piece of new 

information is valuable because even not finding a source in a specific area increases our 

confidence in the other locations. After each update the posterior estimate can be recycled as an 

informed prior estimate for the following iteration. 

2.2 Bayes’ Theorem Example 

2.2.1 Early Season Batting Average 

A simple example to demonstrate the key concepts behind Bayesian inference is to consider the 

problem of estimating a player’s batting average for the season before the season starts. A safe 

assumption is the player will hit somewhere between 0.210 and 0.350 on the season so 0.270 will 

serve as the prior estimate. This can be represented as a 𝛽-distribution with parameters 𝛼 = hits 

and 𝛽 = non-hits. 

 

𝐵𝑎𝑡𝑡𝑖𝑛𝑔 𝐴𝑣𝑔. =  0.270 =  
𝛼

𝛼 +  𝛽
=

81

81 +  219
 

 

If after 300 at-bats the player has 100 hits, we can update the posterior estimation of the player’s 

season long batting average to reflect the new information available: 

 

𝐵𝑎𝑡𝑡𝑖𝑛𝑔 𝐴𝑣𝑔. =  
81 +  100

(81 +  100)  +  (219 +  200)
 =  0.303 

 

The player hit 0.333 through his first 300 at-bats, which is a hall-of-fame caliber batting average. 

It is unlikely he would sustain that average throughout the season. Thus, weighting the data 

against a prior estimate helps protect the overall posterior estimate from fluctuations or outliers. 

2.2.2 Monty Hall Problem 

Another classic problem that is commonly associated with Bayes’ theorem, and will assist in 

introducing the idea of conditional probabilities, is the Monty Hall problem. Consider you are on 
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a game show and there are three doors, labeled A, B, and C. Behind one door is a brand new car 

and behind the other two are goats. So, initially there is a 1/3 chance of the car being behind any 

door. You select door B, but before the host reveals what is behind door B he opens door A to 

reveal a goat and asks you if you’d like to change your pick. Is it better to switch, stay with your 

original pick, or does it not matter? Bayes’ theorem shows us that it is always better to switch.  

 If the host were to pick any door to reveal, the process would be random and we could 

represent the probability of the car being behind door A (the revealed door) and door B (the 

selected door) by Table 2.1. However the door the host selects to reveal is not random because 

the host knows which door the car is behind and will never select that door. Thus the probability 

of the car being behind door A is zero and in order to keep the total probability equal to 1, the 1/3 

probability of (A ∩~B) is pushed to P(~A ∩ ~B). After the host opens door A to reveal a goat, 

the game probabilities shift to the values laid out in Table 2.2. 

From the Bayesian standpoint, the probability of the car being behind the original 

selection, once one of the possible doors is removed, is less than the probability that it is behind  

 

 

Table 2.1: Conditional probability of a true random selection. 

 P(A) P(~A) Total 

P(B) 0 1/3 1/3 

P(~B) 1/3 1/3 2/3 

Total 1/3 2/3 1 

 

 

Table 2.2: Conditional probability after door A is revealed. 

 P(A) P(~A) Total 

P(B) 0 1/3 1/3 

P(~B) 0 2/3 2/3 

Total 0 1 1 
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another door. So by updating the conditional probability of a hypothesis with objective 

knowledge about the situation, a better approximation of the car’s true location can be made. 

2.3 Bayesian Search Methods 

2.3.1 Bayesian Search Theory 

Bayesian search methods have been employed by the military for a number of challenges, dating 

back to World War II, despite the reluctance to admit it. Perhaps the most famous 

implementation of Bayesian inference techniques during WWII was Alan Turing cracking the 

German Enigma codes [2]. During the Cold War the military used the same search methods to 

locate missing Soviet and American submarines [2] as well as the missing hydrogen bomb off 

the coast of Palomares, Spain [7].  

The underlying approach of Bayesian search methods is to: 

1. Outline all possible hypothesis regarding the location of the search target. 

2. Assign a prior probability to each hypothesis. 

3. Determine the likelihood of detecting the search target if it is there. 

4. Update the prior hypothesis with objective data from the search to determine the new 

probabilities of each hypothesis, known as the posterior. 

 

Figure 2.1 depicts the primary difference between Bayesian and frequentist inference methods. 

Frequentist methods are normally less computationally intensive and start with parameters for 

the statistical model in order to make assumptions about both observed and unobserved data. 

Bayesian inference, on the other hand, incorporates prior knowledge with the calculated 

likelihood of data observed to make a hypothesis about the parameters of the problem. Where, 𝜇 

is the mean value and 𝜎 is the standard deviation of the data. 

2.3.2 Maximum Likelihood Estimation (MLE) 

Maximum likelihood estimation is a method to find the parameters of a model by means of 

maximizing the likelihood of the parameters against the data observed. In context, this project  
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Figure 2.1: Process flow of Bayesian versus conventional inference techniques 

 

 

aims to determine background radiation levels, of a search space, in real-time. For complex 

urban areas background radiation levels can vary drastically. Thus a simple background 

calibration measurement at one point in the space would not be an accurate estimation of the 

average background radiation throughout the entire area of interest. Using MLE to update the 

likelihood of the mean background radiation counts as data is acquired is an efficient way to 

account for background radiation without a-priori knowledge of the landscape. 

 Equation 2.3.1 is the probability density of an observed data point against a Gaussian 

model with parameters 𝜇 and 𝜎. 

 

𝑃(𝑥; 𝜇, 𝜎) =
1

𝜎√2𝜋 
 𝑒𝑥𝑝(

−(𝑥−𝜇 )2

2𝜎2 )      (2.3.1) 

 

For computational reasons we will take the log transform of this function and work with the log 

probability density function (pdf). For more information on this see Section 3.4.2. Equation 2.3.2 

shows the log probability density of the observed data point against the predicted model 

 

𝑙𝑛(𝑃(𝑥; 𝜇, 𝜎)) = 𝑙𝑛(
1
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And the total log-likelihood of an entire dataset X can be calculated from 
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In order to find the maximum likelihood for the parameter 𝜇 take the partial derivative of 

equation 2.3.3 with respect to 𝜇 and solve. This works out to be 

 

𝛿𝑙𝑛(𝑃(𝑋;𝜇,𝜎))

𝛿𝜇
=

1

𝜎2 (∑ 𝑥𝑛 − 𝑛𝜇)     (2.3.4) 

 

Setting equation 2.3.4 to zero and solving for 𝜇 will return the highest likelihood value for the 

data observed. This value can be updated as more data becomes available to maintain as accurate 

of an approximation of the average background radiation levels according to the information 

available. 

 MLE is a powerful tool for aerial search projects. However, it does not offer the same 

capability as Bayesian inference methods to insert prior knowledge. MLE will strictly be used in 

estimating the average background radiation levels of the area. From there, Bayesian inference 

methods will take over in estimating the source(s) location. 

 The key difference between Bayesian inference and MLE methods is that MLE 

calculations treat the parameter of interest as a point estimation, while Bayesian methods treat it 

as a random variable. 

2.3.3 Nonparametric Density Estimation 

Nonparametric density estimations do not operate under the assumption that the data will follow 

a specific model like parametric estimations do (i.e. Normal or Beta distributions). This is 

beneficial for circumstances where anomalies can potentially create non-smooth distributions 

and skew the parameter estimations. Within the scope of this project, large urban areas or 

multiple sources present in the search space will make it difficult to fit the data to a particular 

parametric model. Nonparametric density estimations, such as a Kernel Density Estimation 

(KDE), offer a potentially effective method for calculating the probability density function of a 

random variable in complex problems such as source localization. 
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2.4 Evolution of Applied Bayesian Search Theory 

2.4.1 Palomares H-Bomb 

In January of 1966 a B-52 bomber was enroute from North Carolina to Europe when a 

miscommunication between the bomber pilot and the pilot of a KC-135 refueling aircraft caused 

both planes to go down over the coast of Spain. The bomber was carrying four Mk28-type 

hydrogen bombs. One bomb was recovered intact, two of the bombs’ cores were destroyed and 

scattered over surrounding farmland, and one of the bombs was nearly 3000 feet deep in the 

ocean. 

 After weeks of no success locating the missing bomb, the Air Force finally asked the 

Navy for assistance. The U.S. Navy brought on John Craven, a proven expert in problems such 

as this. Craven successfully located the U.S.S. Thresher in 1963 and the U.S.S. Scorpion a few 

years after the Palomares search (1968) [2] (see Section 2.4.2).  

Craven and his team explored a number of possible outcomes for the bomb’s descent 

based on how many parachutes may have deployed, if it remained intact, etc. They then placed 

bets on the most likely scenarios and applied probabilities to each. This produced the first 

likelihood map with seven locations of interest. When the original search of these locations 

turned up empty, the likelihood map was updated.  

A fisherman named Francisco Orts had originally reported the location of the missing 

bomb to the Air Force, at the beginning of the search, but his testimony was disregarded because 

he did not use what the Air Force deemed appropriate methods to note the location where the 

bomb landed. After Craven took over, he tracked down Orts, asked him to show where he 

thought the bomb had descended, then drew a mile radius around that location and named it 

“Alpha I” [2]. The bomb was eventually located within a mile of Orts’ pinpoint. Dr. Henry 

Richardson used Bayes’ theorem to calculate the value of Orts’ testimony and it was determined 

that his account saved the government at least a year’s worth of effort [2]. 

 Finding the missing bomb off the coast of Palomares, Spain, across hundreds of square 

miles of poorly-mapped ocean floor, when the only information regarding its location was a local 

fisherman’s account from afar, was no simple task. Bayesian search methods proved to be a 

powerful tool for difficult search problems such as this. 
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2.4.2 USS Scorpion 

In May 1968, shortly after the Soviet submarine K-129 went missing, the USS Scorpion was 

reported missing when it failed to make port in Norfolk, Virginia. The submarine was on a 

3,000-mile route from Spain to Virginia and no distress signals were received to indicate a 

potential problem on board. Fortunately, an unnamed agency monitoring radar and sensor data 

was able to localize an unusual event about 400 miles off the coast of the Azores, which 

corresponded with the anticipated path of Scorpion [2]. This bit of information narrowed the 

search space from a 3000-mile-long area to roughly a few square miles [8]. Still, locating a 

missing submarine in roughly 4 square miles of ocean stretching to depths greater than 2 miles is 

no simple task. The primary difference between the Palomares H-bomb search and the search for 

the USS Scorpion was that the Palomares search did not utilize Bayesian priors in combination 

with search effectiveness probabilities (SEP). For this search a powerful computer back in the 

United States would compute the probabilities of the pre-search hypothesis, then these priors 

were combined and updated on the ship with the daily results of the search. Treating the search 

space as a standard Euclidean 2-space X, with coordinates designated by ordered pairs (x1 , x2 ), 

where x1 and x2 are independent, normally distributed variables with mean 0 and standard 

deviations 𝜎1 and 𝜎2 , respectively, the probability density function for the location of the missing 

ship can be modeled by: 

 

𝑝(𝑥1, 𝑥2) =
1

2𝜋𝜎1𝜎2
𝑒𝑥𝑝[−

1

2
(

𝑥1
2

𝜎1
2 +

𝑥2
2

𝜎2
2)]         𝑓𝑜𝑟 (𝑥1, 𝑥2) ∈ 𝑋   (2.3.5) 

 

The problem of finding a missing submarine was then at least simplified to finding a stationary 

target with a bivariate normal distribution. The remnants of the USS Scorpion were found on 

October 30th, 1968 [2]. 

2.5 Radiation Counting Statistics 

The general theory for particle flux, at distance r, from a point source is given by equation 2.3. 

 

𝜙 =
𝑆0

4𝜋𝑟2 𝑒−𝜇𝑥      (2.3) 
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Where 𝜙 is the radiative flux, 

S0 is the source strength, 

𝜇 is the attenuation coefficient of the shielding material, and 

x is the depth of shielding. 

 

 From equation 2.3 it can be seen that the flux falls off by r2. While the expected signal 

drops off exponentially as a detector moves away from a source’s location, radiation counting 

statistics (i.e. the number of photons hitting a detector in a given interval) follow a type of 

normal distribution known as a Poisson distribution. This relationship is fundamental for the 

calculations involved in this project. An exponential falloff hinders the detection capability at 

far-off detection distances. Additionally, the 1/r2 dependence makes detection in areas of already 

low signal-to-noise ratios difficult. Thus any signals above background levels become potential 

areas of interest. 

 Unlike this project’s predecessor (BASBP), SWARM will not use the flux data from a 

Monte Carlo transport code to weight particles around a measurement’s location. The objective 

of this project is to be able to locate missing sources of unknown composition and strength. 

Tools like Monte Carlo N-Particle (MCNP6) rely on source information (i.e. composition, 

strength, location) to model particle data and subsequent detector response at all points within 

the search space. For SWARM measurements of raw counts, along with simple particle flux 

theory principles, are used to determine the likelihood probabilities within the area of interest. 

2.6 Detector Response 

The detection system response involves both the physical response from the interaction of 

radioactive material with the detector material as well as the response of the electronics. This 

project utilizes plastic scintillators onboard each UAS. Scintillation detection can be summarized 

by two broad steps: 

1. Absorption of energy from incident radiation in the scintillation material and subsequent 

emission of photons. 

2. Amplification of the light and production of an output signal. [16] 

Thus scintillation detection relies heavily on how effectively incident radiation deposits energy. 
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2.7 Savitzky-Golay Filter 

The Savitzky-Golay filter is a data smoothing function that helps boost signal-to-noise ratios 

without drastically distorting the data. It utilizes a linear least-squares method to fit low-degree 

polynomials to a series of adjacent data points otherwise known as convolution [SG wiki].  

Convolution methods define two functions from adjacent data series, and then a third 

function to model how a change in one of the fits modifies the other. This enables larger 

differentials over shorter distances to be distinguished from background noise, increasing the 

ease, and accuracy of hotspot identification.  
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Chapter 3 

Methodology 

The objective of the SWARM project is to be able to deploy multiple UAS devices and return 

the posterior probability about the lost or stolen source’s location from a distributed detection 

network, in a computationally time-efficient manner. This chapter outlines the problem statement 

for the SWARM project and explains the various approaches and considerations taken in 

designing and implementing this novel algorithm. 

3.1 Search Characterization 

Source detection is a broad topic with far more ways to complicate the problem than to simplify 

it. When addressing such complex problems it is essential to keep the scope of the investigation 

within reason. In designing the Bayesian algorithm the following assumptions were applied: 

 

The source(s) is stationary throughout the search. 

The source(s) is within the defined search space (i.e. P(B) = 1). 

The activity and specific nuclide is unknown. 

Gamma flux is independent of the UAS’ velocity. 

No prior knowledge of background radiation levels is available. 

Non-directional detector is used for the search. 

 

By assuming there is no prior knowledge about the source (i.e. strength, identity), and thus not 

comparing the obtained data against a precalculated library, the intention is that the search 

algorithm has the versatility to be used in a wider range of scenarios beyond the immediate scope 

of this effort. 

3.2 SWARM Hardware 

For live implementations of the Bayesian algorithm this project will utilize Pixhawk flight-

controlled quadcopter UAV. There are currently two HSE AG6 UAVs for live deployment, with 
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a third to be bought in Fall 2019. The radiation detection system on board will consist of an Eljin 

plastic scintillator, a Bridgeport Instruments USB base, and a linear focused photomultiplier tube 

(PMT). For the time being a Raspberry Pi or Linux OS-based Laptop will be used in conjunction 

with a compatible camera for spectral imaging purposes, with the hope of upgrading to a 

BaySpec OCIM Push Broom Multispectral Imaging Camera run with Windows 7 PRO on a 

mini-computer. The computations onboard will be made by a Linux-based OS computer system. 

In addition to the onboard detection and computation systems, communications to and from the 

UAS will rely on XBee radios operating at 900 MHz. This operating frequency will allow the 

UAS to transmit data from greater distances, but at the expense of a lower bit rate. Standard 

serial communications will be used to communicate between the associated computer and the 

XBee radio attached along with any other external hardware (such as GPS units). 

3.3 Algorithm Methodology 

At its core the Bayesian algorithm design follows a rather simple outline, guided by the Bayesian 

concepts explained in Chapter 2. It combines prior knowledge with incoming data to update the 

probability space. The process flow of the Bayesian code is depicted in Figure 3.1. The Bayesian 

code was designed in Python because of its object-oriented capability and subsequent flexibility 

with handling large and complex data structures. All functionality of the Bayesian code is self-

contained in a class structure to enable it to be either passed or overwritten through a proper class 

inheritance structure. This organization of the code is intended to reduce redundancy within the 

project as well as keep the code as simple, robust, and flexible as possible for future iterations to 

build off with minimal difficulty. The aim of this project is to remain platform and source 

agnostic. The class structure of the Bayesian algorithm allows for more specific designations of 

the code to recycle all core functionality and tailor individual class attributes and methods to the 

parameters of the search. 

Figure 3.2 displays the iterative process flow of the Bayesian algorithm update method. 

The dotted line outlining the arrow from the Initial Prior to the Global Data Repository is to 

signify that this process only occurs once, at the initialization of the search. Since no data is 

present at the start, an evenly weighted prior distribution will serve as an unbiased prior 

hypothesis. Beyond the initial calculation of the likelihood of the data against the prior 

hypothesis, the resulting posterior distribution is recycled as an educated prior for future updates. 
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Figure 3.1: Process flow of Bayesian search code 

 

 

 

 

 

 

Figure 3.2: Process flow of Bayesian update process. 
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The data collected by the UAS fleet, along with the prior and posterior distributions, is stored in 

a global data repository. From this update process a visual of the most current posterior 

distribution is rendered for the user. 

3.3.1 Code Instantiation 

The SWARM Bayesian search program can be initiated by running the Swarm.py file. This 

program begins by prompting the user for the number of drones in the swarm. From this the 

program will create as many instances of the Bayesian class. An instantiation of the Bayesian 

class will then create a dataframe, as an attribute of the instance, for a drone to feed data back to. 

All instance dataframes will feed into a central repository, which the main script of the Bayesian 

class is programmed to use for updating the posterior distribution.  

3.3.2 Flight Pattern Optimization 

Flight patterns are predetermined in the large and medium area search efforts to locate 

radiological hot spots. Based on the highlighted areas determined by these initial surveys of the 

search space, a local Right Angle Turn (RAT) method (see Section 3.5) will be used to 

autonomously pinpoint a more exact location. 

3.3.3 Measurement and Detection Decision 

Within the simulation tests, a measurement is represented by extracting a data point from a 

location along the search agent’s path and adding it to the global data repository. In live flights 

the detectors onboard the drones will continuously stream data (count rate, latitude, longitude, 

and altitude) to the onboard computer. 

 Visual rendering of the resulting posterior distribution as the area is surveyed will allow 

for basic user hotspot identification. To better distinguish the maxima within the data, a 

Savitzky-Golay filter will be applied (see Section 2.6). Methods within the Bayesian class allow 

the user to set a desired confidence threshold, above background levels, to label a local maxima 

as a hotspot and begin the RAT pinpointing method (see Section 3.5) 
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3.3.4 Update Probability Search Space 

A distinguishing feature of Bayesian inference techniques is the incorporation of prior 

knowledge, weighted against incoming data, to update the posterior hypothesis. Since the 

Bayesian algorithm calculates the probability densities under a log transform, the likelihood and 

prior probability densities are summed each update (as opposed to multiplied, by eqn. 3.1). This 

posterior distribution is recycled as the next prior hypothesis before it is brought out of the log 

transform and normalized for the rendered graphic representation. The probability density values 

under the log transform are not normalized. Thus, creating an inherent weighting factor as newly 

calculated likelihoods are added and probability density values accumulate each update. A basic 

process flow of the Bayesian update method can be seen in Figure 3.2. 

3.4 Design Considerations 

While the primary focus of this project is to search for and locate rogue radioactive sources, it is 

impossible to anticipate the exact scenario. Thus, the intent is to design the code such that it is 

versatile in application, as well as detector and platform agnostic. In addition, the code must be 

designed such that it can efficiently handle large amounts of data, streaming from multiple 

search agents simultaneously. 

3.4.1 Multithreading 

In an effort to allow for receiving and transmitting signals simultaneously between the ground 

station and n-number of UAS agents, multithreading capability was integrated into the code. 

Without multiple threads running, the code would have to wait on the information to be 

transmitted, or received, before processing another transmission. Additional threads, however, 

allow for asynchronous tasks to run in the background and prevent potentially losing data or 

delayed commands to the drone due to backed up communication channels. Threading 

functionality is inherited from the class threading within python’s standard library. 

3.4.2 Underflow 

The hypothesized location of the source within the search space is represented using probability 

densities. By equation 2.1 the prior and likelihood probabilities are multiplied, then divided by a 

normalizing constant. When working with large datasets the probability densities tend to be very 
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small, near-zero values. Multiplying several small decimal values eventually results in python 

rounding down to zero, and the distribution is lost. This is known as underflow. To counter this 

issue the Bayesian code processes the update of the posterior distribution under a log transform 

so the prior and likelihood probability density values can be added and subtracted instead of 

multiplied and divided. Addition and subtraction is also less computationally taxing than 

multiplication and division, allowing for the code to process updates faster. This difference in 

computation time is minimal, however more noticeable as the amount of data increases. As 

previously mentioned, the objective is to design the Bayesian code to be as robust as possible in 

order to handle larger scale areas and more complex problems than the scope of this project 

encompasses, in future extensions of this work. Thus even incremental improvements to the 

code’s speed is of value. 

3.4.3 Pandas 

Data within the Bayesian algorithm is contained and manipulated inside pandas dataframes. All 

functionality and operations of the Bayesian code could be designed using core Python packages. 

However, packages such as pandas and numpy offer extensive advantages for more complex data 

structures and data analysis. Pandas is a wrapper for numpy functionality with added flexibility 

with regards to organizing and indexing data. Tests within the scope of this effort read in data as 

an array. The flexibility added from incorporating the pandas library allows the algorithm to 

handle input data in other forms, such as a string or dictionary, with minimal change to the code. 

3.5 MCNP6 Simulation 

Prior to employing the Bayesian algorithm in the field, a simulated environment was created 

using MCNP6 to allow the Bayesian code to be tested, and adjusted as needed, for a single 

source scenario. An F4 tally, which models the average particle flux across a cell, was used to 

create simulated data.  

 The energy deposited at a given point in the simulated environment represents a single 

measurement by a search agent. Methods within the Bayesian class can take multiple points 

along a predetermined, or random path to simulate multiple agents taking measurements at once.  

Figure 3.3 displays how multiple drones, represented as instances of the UAS class, a 

subclass inheriting from the Bayesian class, can simulate taking measurements within the search 
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space, by taking sample data points from a precalculated MCNP tally, and feeding that data back 

to the global repository. This global dataframe is what is passed to the Bayesian processing 

methods of the code. It instantiates as an array of equal nonzero values to provide an unbiased 

prior before any data is obtained. As the data is fed from the search agents it overwrites the 

previous data point. 

 Data is collected and stored as (1x4) arrays with columns: Value, Latitude, Longitude, 

and Altitude. After calculating the likelihood distribution a column is added containing the log 

probability density values. By the end of the Bayesian processing methods the central dataframe 

layout resembles Table 3.1 

The Log PDF column serves as the likelihood of the collected data and is recalculated 

each time new data is obtained and added to the dataframe. For the Update() method the Log 

PDF and Prior columns are used in calculating the posterior distribution. The Update() method is 

designed to first check if a Prior column exists. If it does not, that means it is the first iteration of 

the Bayesian process and it simply passes the likelihood values as the posterior because there is 

no prior calculation to weight the values against. In all subsequent updates the prior and 

likelihood values are both used in determining the posterior hypothesis values. For either case, 

the posterior values are then recycled and stored as the prior hypothesis for the following update 

calculation. 

 

 

 

Figure 3.3: Graphic representation of how data is handled from the individual search agent to the global repository. 
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Table 3.1: Layout of global dataframe variable. 

Value 

(Unit) 

Latitude 

(Degrees) 

Longitude 

(Degrees) 

Altitude 

(m) 

Log PDF Prior Posterior 

51 35.9544 83.9295 50.1 -7.025 -5.551 -12.576 

55 35.9550 83.9285 52.0 -6.454 -7.380 -13.934 

40 35.9552 83.9281 51.5 -8.721 -10.252 -18.973 

47 35.9559 83.9269 50.8 -6.903 -5.649 -12.552 

 

3.5.1 Mctal_evaluate.py 

MCNP6 returns tallys as a mctal file. Mctal_evaluate.py, developed by Tucker McClanahan, is a 

script that reads in the mctal file from MCNP and returns the tally data in a dictionary of numpy 

arrays for easier analysis in Python. 

3.6 Multi-Tier UAS Source Localization 

Working in parallel with the Bayesian algorithm described to this point is the design of a novel 

multi-tier algorithm for aerial search-agent flight-pattern control. Benjamin Lajos Magocs has 

integrated large area, medium area, and local pinpointing capability into a single algorithm to run 

collaboratively with the Bayesian processing methods with single aircraft or multi-drone 

swarming aircrafts.  

 The large area search tier operates on a predetermined path to identify regions of elevated 

raw counts and, if applicable, neutrons using a partial integration of energy curves to produce a 

quasi-gamma/neutron discrimination. Then the medium, or broad area tier, uses raw counts to 

update the probability field within preset grids, highlighting hot spot locations within the search 

space. Finally, the small area (i.e. pinpointing) method focuses on high probability locations by 

means of a Right Angle Turn (RAT) method (Figure 3.4). 

This algorithm also utilizes a central data repository for its hot spot and subsequent flight 

pattern determinations. Mr. Magocs’ triple-tier system integrated with Bayesian inference 

methods is a methodical and effective approach to the problem large region of aerial based 

source localization. 
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Figure 3.4: Process flow of Right Angle Turn (RAT) localization method [9] 
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Chapter 4 

Results 

This chapter will present the results from testing the Bayesian algorithm across multiple 

simulated scenarios. Single and multi-drone tests will be conducted in a simulated environment 

with a bare Cs-137 source, and the effectiveness of critical design considerations as well as the 

implementation of the Bayesian algorithm in the project’s multi-tier localization system will be 

demonstrated. 

4.1 Multi-Drone Simulation 

To test the multiple input, output, and multi-agent control features of the Bayesian algorithm 

multiple drones are simulated flying through a virtual space created with a Monte Carlo N-

Particle transport code (MCNP6). The MCNP environment is designed to replicate the project’s 

current site for live flight tests, with a bare Cs-137 source placed within the space. The test site is 

157 meters in length and 45 meters wide, roughly 1.75 acres. 

 Drones are created as instantiations of the Drone subclass and each travel three 

predetermined paths across the space. The code is designed in such a way that n-drones can be 

instantiated for a search. Three drones were used for this demonstrations as an arbitrary number 

to demonstrate the multi-agent control. After each length across the area the drones push their 

collected data to the central data repository to update the posterior hypothesis. The posterior 

hypothesis is represented as probability densities across the x and y axis. Note that probability 

densities are related to the probability but are not exact probability values. Thus a higher 

probability density expresses a greater degree of belief in one possible result over another based 

on the data currently available. 
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Figure 4.1: X-dimension posterior distributions at search height of 10 meters. 

 

 

 

Figure 4.2: Y-dimension posterior distributions at search height of 10 meters. 
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Figure 4.3: X-dimension posterior distributions at search height of 50 meters. 

 

 

 

Figure 4.4: Y-dimension posterior distributions at search height of 50 meters. 



www.manaraa.com

31 

 

Figure 4.5: X-dimension posterior distributions at search height of 100 meters. 

 

 

 

Figure 4.6: Y-dimension posterior distributions at search height of 100 meters. 
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Figures 4.1-4.6 display the results of the simulated multi-drone search at three different altitudes; 

10 meters (Figures 4.1 & 4.2), 50 meters (Figures 4.3 & 4.4), and 100 meters (Figures 4.5 & 

4.6). 

 In each figure the three curves represent the posterior hypothesis at three different points 

of the search. The black line represents the posterior hypothesis after each drone’s initial survey 

of the search space. The blue line represents the updated posterior hypothesis after the drones fly 

across the space a second time and the green line shows the resulting posterior after the second 

update. 

 Defining an area of high interest, or hotspot, within the search space as the area outlined 

by probability densities greater than 0.9, the x and y coordinates in Table 4.1 can be extracted 

from the probability density distributions at each altitude. 

Figure 4.7 is a visual approximation of the rendered hot spots from the simulation. The x 

and y boundaries of the hotspots are returned by the Bayesian algorithm however the visual 

representation above is not currently an output of the code. 

Figures 4.8-4.10 display the results if the same data were to be collected and a single 

posterior distribution rendered, as opposed to iteratively updating the posterior hypothesis 

throughout the search. 

Table 4.2 shows the defined areas of high-interest from the simulated search without 

Bayesian updating. 

To highlight the efficacy of the Bayesian method the high-interest area sizes for the 

Bayesian and non-Bayesian searches at various altitudes are compared in Table 4.3. Both tests 

utilized the same data points for the posterior calculations. By Bayesian methods (i.e. calculating 

the likelihood of incoming data against the prior likelihood as new information is available) the 

resulting area of interest was approximately half that of a non-Bayesian approach (single 

probability density calculation). 
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Table 4.1: Rendered x and y coordinates for high-interest areas of Bayesian search at various altitudes. 

Altitude y1 y2 x1 x2 

10 meters 19.5 30.8 88.2 112 

50 meters 18.2 31.2 81.4 117 

100 meters 17.4 31 77.6 120.8 

 

 

 

 
Figure 4.7: Visual representation of high-interest areas from Bayesian search simulation. 

 

 

 

39.25 117.75 15778.50

X (meters)

Y
 (

m
et

er
s)

1
5

3
0

4
5

10 m

50 m

100 m

x



www.manaraa.com

34 

 
Figure 4.8: Posterior distribution of surveyed area at 10 meters, no updating. 

 

 

 
Figure 4.9: Posterior distribution of surveyed area at 50 meters, no updating. 



www.manaraa.com

35 

 
Figure 4.10: Posterior distribution of surveyed area at 100 meters, no updating. 

 

 

Table 4.2: Rendered x and y coordinates for high-interest areas of non-Bayesian search at various altitudes. 

Altitude y1 y2 x1 x2 

10 meters 17.0 32.4 84.8 115.8 

50 meters 15.0 33.6 72.8 126.0 

100 meters 14.8 33.2 67.7 127.1 

 

 

Table 4.3: Rendered high-interest area sizes of Bayesian versus non-Bayesian tests. 

Altitude Bayesian Search (m2) Non-Bayesian Search (m2) %-Difference 

10 meters 268.9 477.4 77.5 

50 meters 462.8 989.5 113.8 

100 meters 587.5 1094.7 86.3 
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4.2 Multi-Tier Bayesian Localization 

Benjamin Lajos Magocs is developing a multi-tier algorithm for the flight-pattern control of the 

aerial search agents throughout the search (see Section 3.6). This section demonstrates how the 

Bayesian algorithm is integrated as the middle-tier. 

 Potential hot spots identified by the large area search (tier 1) render waypoints to 

determine the aircraft’s path for the medium area search (tier 2). As the drone travels through the 

search space, arrays of data are stored containing the drone’s latitude, longitude, altitude, as well 

as the count rate at that point. Figure 4.11 shows the simulated flight path within the tier 2 

search. 

Figure 4.11 displays the aircraft’s path through the search space (black line) as well as the 

maximum likelihood location from the Bayesian processing methods (blue marker) against the 

maximum count rate observed (red marker). As the search runs for longer periods of time the 

maximum likelihood location shifts closer to the region of maximum count rate observed. In this 

simulation the average latitude and longitude of the two locations is represented by the purple 

marker. This estimated location is less than 5 meters from the source’s true location. 

Figure 4.12 displays the measured count rates along the aircraft’s flight path (top) and the 

resulting posterior distribution (bottom) at the end of the tier 2 search. The detection number 

along the x-axis in Figures 4.12 and 4.13 corresponds to the ordered index of the data array 

stored by the search agent along its flight path. Each detection number corresponds to a point in 

space (latitude, longitude, and altitude) which can be indexed within the code. Hotspot locations 

identified by the Bayesian estimate along with the maximum counts observed are passed to the 

small area pinpointing tier. 

 The location of maximum count rate observed by the aircraft is determined by employing 

a Savitzky-Golay filter to the raw data spectrum. In Figure 4.13 the raw count rate spectrum 

shows the tallest peak to be around detection number 580. However, the Savitzky-Golay filtered 

spectrum shows the true maximum count rate to occur closer to the sources true location, at 

detection instance 475. The convolution method employed by the Savitzky-Golay filter enables 

larger differentials over shorter distances to be highlighted, creating better distinction the true 

signal from outliers and background noise 
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Figure 4.11: Simulated flight path and resulting prediction from tier 2 search [9]. 

 

 

 

 
Figure 4.12: Raw counts and posterior distribution at end of tier 2 search [9]. 
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Figure 4.13: Savitzky-Golay filter over raw data spectrum [9]. 
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Chapter 5 

Discussion 

Nuclear security and nonproliferation efforts rely heavily on proper stewardship of radiological 

materials as well as the ability to locate and retrieve stolen or missing material. As the amount of 

nuclear material used in medicine, academic research, and other industrial applications continues 

to increase so does the amount of material which must be protected and accounted for. Dirty 

bombs are an effective tool for a potential terrorist attack. Combining small amounts of 

radioactive material with conventional explosives can contaminate public areas and create 

widespread anxiety. They are a significant threat to nuclear security and reinforce how critical 

the ability to locate these lost or stolen radioactive sources is, before they can be used in such a 

manner. 

The SWARM project combines Bayesian inference techniques with the Swarm 

Intelligence (SI) theory to advance multi-agent aerial source localization methods as a solution to 

large-area search problems. The Bayesian algorithm presented in this report utilizes a 

decentralized framework to allow for independent multi-agent control throughout the search. The 

search agents collect data locally and push to the global data repository when the posterior 

hypothesis is to be updated. Multithreading capability allows for multiple inputs and outputs at 

one time as well as for the individual search agents to operate without delaying the response of 

the main code. Bayesian inference methods are already a proven tool for large area search 

problems. Applying that tool to an aerial-based search effort and developing a network to handle 

multiple local search agents each feeding back data to a central repository in order to rapidly 

locate rogue materials addresses a critical gap in the nuclear security field. 

Preliminary simulations have demonstrated the SWARM algorithm’s ability to collect 

and store data locally in the drone’s repository until a push to the global repository is requested, 

update the posterior distribution of the space, and identify areas of interest based on a given 

probability density threshold. 

Figures 4.1-4.6 display the resulting posterior distributions of a simple simulation where 

multiple search agents survey a field containing a bare Cs-137 source. There are no obstructions 

and no shielding surrounding the source. Thus, the data is smooth and easy for the drones to 
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locate the source. Each update calculates the likelihood of the newly obtained data against the 

previous distribution. In this simulation the updates reduce the width of the posterior distribution, 

increasing the confidence regarding the source’s location. The primary focus of this test was to 

demonstrate the functionality of the SWARM algorithm’s critical components. Future tests will 

begin to stretch the limits of the code’s abilities (i.e. shielded materials, multiple sources, larger 

search areas). It can be seen in Figures 4.5 and 4.6 that noise plays a significant factor, even in a 

simulated environment, at 100 meters. 

Figure 4.7 shows the effectiveness of the Bayesian algorithm for quickly reducing the 

area of interest within the search. By setting the threshold at PDF > 0.9 the original search space 

was reduced by over 90% after each drone flew three lengths of the area at an altitude of 100 

meters. By contrast, if the same data points were to be collected and processed all at once (i.e. 

not updating the posterior hypothesis throughout the search) Figures 4.8-4.10 display the 

posterior PDFs for the x and y coordinates of the search space. The width of these distributions is 

significantly greater than Figures 4.1-4.6 where, Bayesian update methods process the likelihood 

of the data against the current hypothesis. Thus, the posterior area of interest for the non-

Bayesian search is also greater. Table 4.3 compares the areas of interest rendered by the posterior 

distributions for the Bayesian and non-Bayesian calculations. 

The Bayesian methods of the SWARM code have also been integrated smoothly as the 

middle tier of Benjamin Lajos Magocs’ multi-tier aerial-based source localization algorithm. In 

simulation the Bayesian code was able to identify a hotspot within 5 meters of the source’s true 

location. This hotspot was then passed to the third and final tier of Mr. Magocs’ algorithm. 

Effective aerial-based source localization capability is an immediate necessity for 

locating lost or stolen nuclear materials. The work done in years one and two of the SWARM 

project has laid the foundation to address this need. The SWARM algorithm has been designed 

as a simple solution to a complex problem. Year three of the project will take the Bayesian 

search code beyond simulation to live drone tests. This project shows great promise for being 

able to address the need for rapid source localization in large, possibly urban environments.  
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Chapter 6 

Future Work 

The next step of this project is to apply the Bayesian search algorithm to live flight tests with 

one, or multiple, of the project’s drones. With respect to the code, it is yet to be seen how the 

analysis methods will fare against more complicated scenarios. The statistical processing 

methods are intended to be simple and as agnostic as possible so that the application of this code 

may extend beyond the immediate scope of the SWARM effort. Complications such as shielding 

of the source, multiple sources, or large urban scenarios where abnormal radiative effects can 

produce anomalies in the data have not yet been experimented with. When these effects are 

explored, the efficiency of parametric versus nonparametric density estimations should be 

compared. Additionally, testing the SWARM code in larger test areas will be interesting to see 

how effective of a method it would be to feed the resulting hot spots in as a new search space, 

iteratively narrowing the scope of a large area down to a source(s) location. The class structure 

of the SWARM code enables this next step to potentially be rather simple. The coordinates of the 

hotspot could be saved as a class attribute, then called and subsequently overridden each 

iteration. This will be one of the next steps taken to advance the Bayesian algorithm and continue 

the effort of designing a powerful multi-agent search code. 
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